[1] WILLE R. Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts // RIVAL I, ed. Ordered Sets. Berlin, Germany: Springer, 1982: 445-470.
[2] ZADEH L A. Fuzzy Sets. Information and Control, 1965, 8(3): 338-353.
[3] PAWLAK Z. Rough Sets. International Journal of Computer and Information Sciences, 1982, 11(5): 341-356.
[4] ZADEH L A. Toward a Theory of Fuzzy Information Granulation and Its Centrality in Human Reasoning and Fuzzy Logic. Fuzzy Sets and Systems, 1997, 90(2): 111-127.
[5] YAO Y Y. Three-Way Decisions with Probabilistic Rough Sets. Information Sciences, 2010, 180(3): 341-353.
[6] GANTER B, WILLE R. Formal Concept Analysis: Mathematical Foundations. Berlin, Germany: Springer, 1999.
[7] CARPINETO C, ROMANO G. A Lattice Conceptual Clustering System and Its Application to Browsing Retrieval. Machine Learning, 1996, 24(2): 95-122.
[8] NGUYEN P H P, CORBETT D. A Basic Mathematical Framework for Conceptual Graphs. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(2): 261-271.
[9] TU X D, WANG Y L, ZHANG M L, et al. Using Formal Concept Analysis to Identify Negative Correlations in Gene Expression Data. IEEE/ACM Transactions on Computational Biology and Bioinforma-tics, 2016, 13(2): 380-391.
[10] ZOU C F, ZHANG D Q, WAN J F, et al. Using Concept Lattice for Personalized Recommendation System Design. IEEE Systems Journal, 2017, 11(1): 305-314.
[11] SAMPATH S, SPRENKLE S, GIBSON E, et al. Applying Concept Analysis to User-Session-Based Testing of Web Applications. IEEE Transactions on Software Engineering, 2007, 33(10): 643-658.
[12] 陈德刚,徐伟华,李金海,等.粒计算基础教程.北京:科学出版社, 2019.
(CHEN D G, XU W H, LI J H, et al. Elements of Granular Computing. Beijing, China: Science Press, 2019.)
[13] MEDINA J. Relating Attribute Reduction in Formal, Object-Oriented and Property-Oriented Concept Lattices. Computers and Mathematics with Applications, 2012, 64(6): 1992-2002.
[14] BURUSCO A, FUENTES-GONZALEZ R. The Study of the L-Fuzzy Concept Lattice. Mathware and Soft Computing, 1994, 1(3): 209-218.
[15] BELOHLÁVEK R. Fuzzy Galois Connections. Mathematical Logic Quarterly, 1999, 45(4): 497-504.
[16] DUNTSCH I, GEDIGA G. Modal-Style Operators in Qualitative Data Analysis // Proc of the IEEE International Conference on Data Mining. Washington, USA: IEEE, 2002: 155-162.
[17] YAO Y Y. Concept Lattices in Rough Set Theory // Proc of the IEEE Annual Meeting of Fuzzy Information. Washington, USA: IEEE, 2004: 796-801.
[18] QI J J, WEI L, YAO Y Y. Three-Way Formal Concept Analysis // Proc of the International Conference on Rough Sets and Know-ledge Technology. Berlin, Germany: Springer, 2014: 732-741.
[19] LEHMANN F, WILLE R. A Triadic Approach to Formal Concept Analysis // Proc of the 3rd International Conference on Conceptual Structures. Berlin, Germany: Springer, 1995: 32-43.
[20] DJOUADI Y, PRADE H. Interval-Valued Fuzzy Formal Concept Analysis // Proc of the International Symposium on Methodologies for Intelligent Systems. Berlin, Germany: Springer, 2009: 592-601.
[21] JAOUA A, ELLOUMI S. Galois Connection, Formal Concepts and Galois Lattice in Real Relations: Application in a Real Classifier. Journal of Systems and Software, 2002, 60(2): 149-163.
[22] GODIN R, MISSAOUI R, ALAOUI H. Incremental Concept Formation Algorithms Based on Galois(Concept) Lattices. Computational Intelligence, 1995, 11(2): 246-267.
[23] VALTCHEV P, MISSAOUI R, LEBRUN P. A Partition-Based Approach towards Constructing Galois(Concept) Lattices. Discrete Mathematics, 2002, 256(3): 801-829.
[24] FU H G, NGUIFO E M. A Parallel Algorithm to Generate Formal Concepts for Large Data // Proc of the 2nd International Conference on Formal Concept Analysis. Berlin, Germany: Springer, 2004: 394-401.
[25] 张文修,魏 玲,祁建军.概念格的属性约简理论与方法.中国科学(信息科学), 2005, 35(6): 628-639.
(ZHANG W X, WEI L, QI J J. Attribute Reduction Theory and Approach to Concept Lattice. Science in China(Information Sciences), 2005, 35(6): 628-639.)
[26] WU W Z, LEUNG Y, MI J S. Granular Computing and Knowledge Reduction in Formal Contexts. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(10): 1461-1474.
[27] STUMME G, TAOUIL R, BASTIDE Y, et al. Computing Iceberg Concept Lattices with Titanic. Data and Knowledge Engineering, 2002, 42(2): 189-222.
[28] 张文修,仇国芳.基于粗糙集的不确定决策.北京:清华大学出版社, 2005.
(ZHANG W X, QIU G F. Uncertain Decision Making Based on Rough Sets. Beijing, China: Tsinghua University Press, 2005.)
[29] LI J H, MEI C L, LÜ Y J. A Heuristic Knowledge-Reduction Method for Decision Formal Contexts. Computers and Mathematics with Applications, 2011, 61(4): 1096-1106.
[30] LI J H, MEI C L, LÜ Y J. Knowledge Reduction in Decision Formal Contexts. Knowledge-Based Systems, 2011, 24(5): 709-715.
[31] SHI Y, MI Y L, LI J H, et al. Concurrent Concept-Cognitive Lear-ning Model for Classification. Information Sciences, 2019, 496: 65-81.
[32] LI J H, MEI C L, XU W H, et al. Concept Learning via Granular Computing: A Cognitive Viewpoint. Information Sciences, 2015, 298: 447-467.
[33] MI Y L, SHI Y, LI J H, et al. Fuzzy-Based Concept Learning Method: Exploiting Data with Fuzzy Conceptual Clustering [J/OL]. [2020-04-07]. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9058987.
[34] SHI Y, MI Y L, LI J H, et al. Concept-Cognitive Learning Model for Incremental Concept Learning [J/OL]. [2020-04-07]. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8574051.
[35] WEI L, WAN Q. Granular Transformation and Irreducible Elements Judgment Based on Pictorial Diagrams. IEEE Transactions on Cybernetics, 2016, 46(2): 380-387.
[36] XU W H, LI W T. Granular Computing Approach to Two-Way Learning Based on Formal Concept Analysis in Fuzzy Datasets. IEEE Transactions on Cybernetics, 2016, 46(2): 366-379.
[37] MA J M, ZHANG W X, LEUNG Y, et al. Granular Computing and Dual Galois Connection. Information Sciences, 2007, 177 (23): 5365-5377.
[38] KANG X P, LI D Y, WANG S G, et al. Formal Concept Analysis Based on Fuzzy Granularity Base for Different Granulations. Fuzzy Sets and Systems, 2012, 203: 33-48.
[39] SHAO M W, LEUNG Y, WANG X Z, et al. Granular Reducts of Formal Fuzzy Contexts. Knowledge-Based Systems, 2016, 114: 156-166.
[40] 李金海,吴伟志.形式概念分析的粒计算方法及其研究展望.山东大学学报(理学版), 2017, 52(7): 1-12.
(LI J H, WU W Z. Granular Computing Approach for Formal Concept Analysis and Its Research Outlooks. Journal of Shandong University (Natural Science), 2017, 52(7): 1-12.)
[41] ZHI H L, LI J H. Granule Description Based on Formal Concept Analysis. Knowledge-Based Systems, 2016, 104: 62-73.
[42] 苗夺谦,张清华,钱宇华,等.从人类智能到机器实现模型——粒计算理论与方法.智能系统学报, 2016, 11(6): 743-757.
(MIAO D Q, ZHANG Q H, QIAN Y H, et al. From Human Inte-lligence to Machine Implementation Model: Theories and Applications Based on Granular Computing. CAAI Transactions on Intelligent Systems, 2016, 11(6): 743-757.)
[43] 梁吉业,钱宇华,李德玉,等.大数据挖掘的粒计算理论与方法.中国科学(信息科学), 2015, 45(11): 1355-1369.
(LIANG J Y, QIAN Y H, LI D Y, et al. Theory and Method of Granular Computing for Big Data Mining. Science in China(Information Sciences), 2015, 45(11): 1355-1369.)
[44] 徐 计,王国胤,于 洪.基于粒计算的大数据处理.计算机学报, 2015, 38(8): 1497-1517.
(XU J, WANG G Y, YU H. Review of Big Data Processing Based on Granular Computing. Chinese Journal of Computers, 2015, 38(8): 1497-1517.)
[45] KUZNETSOV S O. Complexity of Learning in Concept Lattices from Positive and Negative Examples. Discrete Applied Mathema-tics, 2004, 142(1/2/3): 111-125.
[46] 范世青,张文修.模糊概念格与模糊推理.模糊系统与数学, 2006, 20(1): 11-17.
(FAN S Q, ZHANG W X. Fuzzy Concept Lattice and Fuzzy Reasoning. Fuzzy Systems and Mathematics, 2006, 20(1): 11-17.)
[47] GEORGESCU G, POPESCU A. Non-Dual Fuzzy Connections. Archive for Mathematical Logic, 2004, 43(8): 1009-1039.
[48] 杨 丽,徐 杨.基于格值逻辑的模糊概念格.模糊系统与数学, 2009, 23(5): 15-20.
(YANG L, XU Y. Fuzzy Concept Lattice Based on Lattice-Valued Logic. Fuzzy Systems and Mathematics, 2009, 23(5): 15-20.)
[49] MEDINA J, OJEDA-ACIEGO M. Multi-adjoint t-Concept Latti-ces. Information Sciences, 2010, 180(5): 712-725.
[50] ELLOUMI S, JAAM J, HASNAH A, et al. A Multi-level Conceptual Data Reduction Approach Based on the Lukasiewicz Implication. Information Sciences, 2004, 163(4): 253-262.
[51] ZHANG W X, MA J M, FAN S Q. Variable Threshold Concept Lattices. Information Sciences, 2007, 177(22): 4883-4892.
[52] LI L F, ZHANG J K. Attribute Reduction in Fuzzy Concept La-ttices Based on the T Implication. Knowledge-Based Systems, 2010, 23(6): 497-503.
[53] BELOHLAVEK R. A Note on Variable Threshold Concept La-ttices: Threshold-Based Operators are Reducible to Classical Concept-Forming Operators. Information Sciences, 2007, 177(15): 3186-3191.
[54] BÉLOHLÁVEK R, SKLENÁR\/ V, ZACKPAL J. Crisply Generated Fuzzy Concepts // Proc of the 3rd International Conference on Formal Concept Analysis. Berlin, Germany: Springer, 2005: 269-284.
[55] LI J H, MEI C L, LÜ Y J. Incomplete Decision Contexts: Appro-ximate Concept Construction, Rule Acquisition and Knowledge Reduction. International Journal of Approximate Reasoning, 2013, 54(1): 149-165.
[56] YAO Y Y. Interval Sets and Three-Way Concept Analysis in Incomplete Contexts. International Journal of Machine Learning and Cybernetics, 2017, 8(1): 3-20.
[57] DEOGUN J S, SAQUER J. Monotone Concepts for Formal Concept Analysis. Discrete Applied Mathematics, 2004, 144(1/2): 70-78.
[58] WANG L D, LIU X D. Concept Analysis via Rough Set and AFS Algebra. Information Sciences, 2008, 178(21): 4125-4137.
[59] 龙柄翰,徐伟华.模糊三支概念分析与模糊三支概念格.南京大学学报(自然科学版), 2019, 54(4): 537-545.
(LONG B H, XU W H. Fuzzy Three-Way Concept Analysis and Fuzzy Three-way Concept Lattice. Journal of Nanjing University (Natural Science), 2019, 54(4): 537-545.)
[60] GANTER B, KUZNETSOV S O. Pattern Structures and Their Projections // Proc of the International Conference on Conceptual Structures. Berlin, Germany: Springer, 2001: 129-142.
[61] KUZNETSOV S O. Learning of Simple Conceptual Graphs from Positive and Negative Examples // Proc of the European Confe-rence on Principles of Data Mining and Knowledge Discovery. Berlin, Germany: Springer, 1999: 384-391.
[62] BORDAT J P. Calcul Pratique du Treillis de Galois d′une Correspondance. Mathmatiques et Sciences Humaines, 1986, 96: 31-47.
[63] NOURINE L, RAYNAUD O. A Fast Algorithm for Building La-ttices. Information Processing Letters, 1999, 71(5/6): 199-204.
[64] LINDIG C. Fast Concept Analysis // Proc of the 8th International Conference on Conceptual Structures. Berlin, Germany: Springer, 2000: 152-161.
[65] VALTCHEV P, MISSAOUI R. Building Concept (Galois) Lattices from Parts: Generalizing the Incremental Methods // Proc of the 9th International Conference on Conceptual Structures. Berlin, Germany: Springer, 2001: 290-303.
[66] CHOI V. Faster Algorithms for Constructing a Concept (Galois) Lattice[C/OL]. [2020-04-07]. https://arxiv.org/pdf/cs/0602069.pdf.
[67] VAN DER MERWE D, OBIEDKOV S, KOURIE D. AddIntent: A New Incremental Algorithm for Constructing Concept Lattices // Proc of the International Conference on Formal Concept Analysis. Berlin, Germany: Springer, 2004: 372-385.
[68] ANDREWS S. In-Close, A Fast Algorithm for Computing Formal Concepts // Proc of the 17th International Conference on Conceptual Structures. Berlin, Germany: Springer, 2009: 1-14.
[69] NJIWOUA P, NGUIFO E M. A Parallel Algorithm to Build Concept Lattice // Proc of the 4th Groningen International Information Technology Conference for Students. Fevrier, The Netherlands: University of Groningen Press, 1997: 103-107.
[70] KENGUE J F D, VALTCHEV P, FJAMEGNI C T. A Parallel Algorithm for Lattice Construction // Proc of the International Confe-rence on Formal Concept Analysis. Berlin, Germany: Springer, 2005: 249-264.
[71] KRAJCA P, OUTRATA J, VYCHODIL V. Parallel Algorithm for Computing Fixpoints of Galois Connections. Annals of Mathematics and Artificial Intelligence, 2010, 59(2): 257-272.
[72] OUTRATA J, VYCHODIL V. Fast Algorithm for Computing Fixpoints of Galois Connections Induced by Object-Attribute Relational Data. Information Sciences, 2012, 185(1): 114-127.
[73] OUTRATA J. A Lattice-Free Concept Lattice Update Algorithm Based on *CbO // Proc of the 10th International Conference on Concept Lattices and Their Applications. Berlin, Germany: Springer, 2013: 261-274.
[74] MUANGPRATHUB J. A Novel Algorithm for Building Concept La-ttice. Applied Mathematical Sciences, 2014, 8(11): 507-515.
[75] AMRANE B, BELALEM G, BRANCI S, et al. Efficient Incremental Algorithm for Building Swiftly Concepts Lattices. International Journal of Web Portals, 2014, 6(1): 21-34.
[76] 齐 红,刘大有,胡成全,等.基于搜索空间划分的概念生成算法.软件学报, 2005, 16(12): 2029-2035.
(QI H, LIU D Y, HU C Q, et al. An Algorithm for Generating Concepts Based on Search Space Partition. Journal of Software, 2005, 16(12): 2029-2035.)
[77] 张继福,张素兰,胡立华.约束概念格及其构造方法.智能系统学报, 2006, 1(2): 31-38.
(ZHANG J F, ZHANG S L, HU L H. Constrained Concept La-ttice and Its Construction Method. CAAI Transactions on Intelligent Systems, 2006, 1(2): 31-38.)
[78] 杜秋香,张继福,张素兰.概念格特化的概念格更新构造算法.智能系统学报, 2008, 3(5): 443-448.
(DU Q X, ZHANG J F, ZHANG S L. An Improved Algorithm Based on Concept Specialization for Constructing Concept Lattices. CAAI Transactions on Intelligent Systems, 2008, 3(5): 443-448.)
[79] 董 辉,马 垣,宫 玺.一种新的概念格并行构造算法.计算机科学与探索, 2008, 2(6): 651-657.
(DONG H, MA Y, GONG X. A New Parallel Algorithm for Construction of Concept Lattice. Journal of Frontiers of Computer Science and Technology, 2008, 2(6): 651-657.)
[80] 智慧来,智东杰,刘宗田.概念格合并原理与算法.电子学报, 2010, 38(2): 455-459.
(ZHI H L, ZHI D J, LIU Z T. Theory and Algorithm of Concept Lattice Union. Acta Electronica Sinica, 2010, 38(2): 455-459.)
[81] ZHI H L, LI J H. Influence of Dynamical Changes on Concept La-ttice and Implication Rules. International Journal of Machine Learning and Cybernetics, 2018, 9(5): 795-805.
[82] 姜 琴,张 卓,王黎明.基于多属性同步消减的概念格构造算法.小型微型计算机系统, 2016, 37(4): 646-652.
(JIANG Q, ZHANG Z, WANG L M. Algorithms of Constructing Concept Lattice Based on Deleting Multiple Attributes Synchronously. Journal of Chinese Computer Systems, 2016, 37(4): 646-652.)
[83] 张 涛,白冬辉,李 慧.属性拓扑的并行概念计算算法.软件学报, 2017, 28(12): 3129-3145.
(ZHANG T, BAI D H, LI H. Parallel Concept Computing Based on Bottom-up Decomposition of Attribute Topology. Journal of Software, 2017, 28(12): 3129-3145.)
[84] 蔡 勇,陈红梅.MapReduce环境下基于概念分层的概念格并行构造算法.中国科学技术大学学报, 2018, 48(4): 275-283.
(CAI Y, CHEN H M. A Parallel Algorithm for Constructing Concept Lattice Based on Hierarchical Concept under MapReduce. Journal of University of Science and Technology of China, 2018, 48(4): 275-283.)
[85] BÉLOHLÁVEK R, VYCHODIL V. What Is a Fuzzy Concept La-ttice[C/OL]. [2020-04-07]. https://pdfs.semanticscholar.org/df4c/eed281d70fe1aa2b9f481ce8a1912d44fcb6.pdf.
[86] PÓCS J. Note on Generating Fuzzy Concept Lattices via Galois Connections. Information Sciences, 2012, 185(1): 128-136.
[87] CROSS V, KANDASAMY M, YI W T. Comparing Two Approaches to Creating Fuzzy Concept Lattices // Proc of the Annual Meeting of the North American on Fuzzy Information Processing Society. Washington, USA: IEEE, 2011. DOI: 10.1109/NAFIPS.2011.5752007.
[88] THO Q T, HUI S C, FONG A C M, et al. Automatic Fuzzy Onto-logy Generation for the Semantic Web. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(6): 842-856.
[89] 许佳卿,彭 鑫,赵文耘.一种基于模糊概念格和代码分析的软件演化分析方法.计算机学报, 2009, 32(9): 1832-1844.
(XU J Q, PENG X, ZHAO W Y. An Evolution Analysis Method Based on Fuzzy Concept Lattice and Source Code Analysis. Chinese Journal of Computers, 2009, 32(9): 1832-1844.)
[90] DE MAIO C, FENZA G, LOIA V, et al. Towards an Automatic Fuzzy Ontology Generation // Proc of the IEEE International Conference on Fuzzy Systems. Washington, USA: IEEE, 2009: 1044-1049.
[91] 刘宗田,强 宇,周 文,等.一种模糊概念格模型及其渐进式构造算法.计算机学报, 2007, 30(2): 184-188.
(LIU Z T, QIANG Y, ZHOU W, et al. A Fuzzy Concept Lattice Model and Its Incremental Construction Algorithm. Chinese Journal of Computers, 2007, 30(2): 184-188.)
[92] BÉLOHLÁVEK R. What Is a Fuzzy Concept Lattice? II // Proc of the 13th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. Berlin, Germany: Springer, 2011: 19-26.
[93] BÉLOHLÁVEK R, DE BAETS B, OUTRATA B, et al. Computing the Lattice of All Fixpoints of a Fuzzy Closure Operator. IEEE Transactions on Fuzzy Systems, 2010, 18(3): 546-557.
[94] BÉLOHLÁVEK R. Algorithms for Fuzzy Concept Lattices // Proc of the 4th International Conference on Recent Advances in Soft Computing. Berlin, Germany: Springer, 2002: 200-205.
[95] BÉLOHLÁVEK R. OUTRATA J, VYCHODIL V. Direct Factorization by Similarity of Fuzzy Concept Lattice by Factorization of Input Data // Proc of the 4th International Conference on Concept Lattices and Their Applications. Berlin, Germany: Springer, 2006: 68-79.
[96] BÉLOHLÁVEK R. DVO?ÁK J, OUTRATA J. Fast Factorization by Similarity in Formal Concept Analysis of Data with Fuzzy Attri-butes. Journal of Computer and System Sciences, 2007, 73(6):1012-1022.
[97] 张 卓,柴玉梅,王黎明,等.模糊形式概念并行构造算法.模式识别与人工智能, 2013, 26(3): 260-269.
(ZHANG Z, CHAI Y M, WANG L M, et al. A Parallel Algorithm Generating Fuzzy Formal Concepts. Pattern Recognition and Artificial Intelligence, 2013, 26(3): 260-269.)
[98] 张 卓,杜 鹃,王黎明.基于负载均衡的模糊概念并行构造算法.控制与决策, 2014, 29(11): 1935-1942.
(ZHANG Z, DU J, WANG L M. Load Balance-Based Algorithm for Parallelly Generating Fuzzy Formal Concepts. Control and Decision, 2014, 29(11): 1935-1942.)
[99] ZHANG Z. Constructing L-Fuzzy Concept Lattices without Fuzzy Galois Closure Operation. Fuzzy Sets and Systems, 2018, 333: 71-86.
[100] ROUANE M H, NEHME K, VALTCHEV P, et al. On-Line Maintenance of Iceberg Concept Lattices // Proc of the 12th International Conference on Conceptual Structures. Berlin, Germany: Springer, 2004: 1-14.
[101] NEHMÉ K, VALTCHEV P, ROUANE M H, et al. On Computing the Minimal Generator Family for Concept Lattices and Icebergs // Proc of the International Conference on Formal Concept Analysis. Berlin, Germany: Springer, 2005: 192-207.
[102] ZAKI M J, HSIAO C J. Efficient Algorithms for Mining Closed Itemsets and Their Lattice Structure. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(4): 462-478.
[103] HU X G, LIU W, WANG D X, et al. Mining Frequent Itemsets Using a Pruned Concept Lattice // Proc of the 4th International Conference on Fuzzy Systems and Knowledge Discovery. Wa-shington, USA: IEEE, 2007. DOI: 10.1109/FSKD.2007.401.
[104] 王黎明,张 卓.基于iceberg概念格并置集成的闭频繁项集挖掘算法.计算机研究与发展, 2007, 44(7): 1184-1190.
(WANG L M, ZHANG Z. An Algorithm for Mining Closed Frequent Itemsets Based on Apposition Assembly of Iceberg Concept Lattices. Journal of Computer Research and Development, 2007, 44(7): 1184-1190.)
[105] 柴玉梅,张 卓,王黎明.基于频繁概念直乘分布的全局闭频繁项集挖掘算法.计算机学报, 2012, 35(5): 990-1001.
(CHAI Y M, ZHANG Z, WANG L M. An Algorithm for Mining Global Closed Frequent Itemsets Based on Distributed Frequent Concept Direct Product. Chinese Journal of Computers, 2012, 35(5): 990-1001.)
[106] LA P T, LE B, VO B. Incrementally Building Frequent Closed Itemset Lattice. Expert Systems with Applications, 2014, 41(6): 2703-2712.
[107] GUPTA A, BHATNAGAR V, KUMAR N. Mining Closed Itemsets in Data Stream Using Formal Concept Analysis // Proc of the International Conference on Data Warehousing and Knowledge Discovery. Berlin, Germany: Springer, 2010: 285-296.
[108] KOVÁCS L, GÁBOR S. Generalization of String Transformation Rules Using Optimized Concept Lattice Construction Method. Procedia Engineering, 2017, 181: 604-611.
[109] WILLE R. The Basic Theorem of Triadic Concept Analysis. Order, 1995, 12(2): 149-158.
[110] OSICKA P. Algorithms for Computation of Concept Trilattice of Triadic Fuzzy Context // Proc of the International Conference on Information Processing and Management of Uncertainty in Know-ledge-Based Systems. Berlin, Germany: Springer, 2012: 221-230.
[111] BÉLOHLÁVEK R, OSICKA P. Triadic Concept Lattices of Data with Graded Attributes. International Journal of General Systems, 2012, 41(2): 93-108.
[112] BÉÁVEK R, OSICKA P. Triadic Fuzzy Galois Connections as Ordinary Connections. Fuzzy Sets and Systems, 2014, 249: 83-99.
[113] 魏 玲,万 青,钱 婷,等.三元概念分析综述.西北大学学报(自然科学版), 2014, 44(5): 689-699.
(WEI L, WAN Q, QIAN T, et al. An Overview of Triadic Concept Analysis. Journal of Northwest University(Natural Science Edition), 2014, 44(5): 689-699.)
[114] 汤亚强,范 敏,李金海.三元形式概念分析下的认知系统模型及信息粒转化方法.山东大学学报(理学版), 2014, 49(8): 102-106.
(TANG Y Q, FAN M, LI J H. Cognitive System Model and Approach to Transformation of Information Granules under Triadic Formal Concept Analysis. Journal of Shandong University(Natural Science), 2014, 49(8): 102-106.)
[115] 王冰洁,张 卓,王黎明.概念三元格渐进式构造算法.小型微型计算机系统, 2017, 38(9): 2101-2106.
(WANG B J, ZHANG Z, WANG L M. Incremental Algorithm for Constructing Concept Trilattices. Journal of Chinese Computer Systems, 2017, 38(9): 2101-1206.)
[116] 王 霞,江 山,李俊余,等.三元概念的一种构造方法.计算机研究与发展, 2019, 56(4): 844-853.
(WANG X, JIANG S, LI J Y, et al. A Construction Method of Triadic Concepts. Journal of Computer Research and Development, 2019, 56(4): 844-853.)
[117] WEI L, QIAN T, WAN Q, et al. A Research Summary about Triadic Concept Analysis. International Journal of Machine Lear-ning and Cybernetics, 2018, 9(4): 699-712.
[118] LI J H, MEI C L, WANG J H, et al. Rule-Preserved Object Compression in Formal Decision Contexts Using Concept Lattices. Knowledge-Based Systems, 2014, 71: 435-445.
[119] TRNECKA M, TRNECKOVA M. Data Reduction for Boolean Matrix Factorization Algorithms Based on Formal Concept Analysis. Knowledge-Based Systems, 2018, 158: 75-80.
[120] 魏 玲.粗糙集与概念格约简理论与方法.博士学位论文.西安:西安交通大学, 2005.
(WEI L. Reduction Theory and Approach to Rough Set and Concept Lattice. Xi′an, China: Xi′an Jiaotong University, 2005.)
[121] WANG X, MA J M. A Novel Approach to Attribute Reduction in Concept Lattices // Proc of the International Conference on Rough Sets and Knowledge Technology. Berlin, Germany: Springer, 2006: 522-529.
[122] MI J S, LEUNG Y, WU W Z. Approaches to Attribute Reduction in Concept Lattices Induced by Axialities. Knowledge-Based Systems, 2010, 23(6): 504-511.
[123] LI T J, LI M Z, GAO Y. Attribute Reduction of Concept Lattice Based on Irreducible Elements. International Journal of Wavelets Multiresolution and Information Processing, 2013, 11(6): 2792-2813.
[124] 魏 玲,祁建军,张文修.决策形式背景的概念格属性约简.中国科学(信息科学), 2008, 38(2): 195-208.
(WEI L, QI J J, ZHANG W X. Attribute Reduction and Rules Extraction in Decision Formal Context Based on Concept Lattice. Science in China(Information Sciences), 2008, 38(2): 195-208.)
[125] LI J H, MEI C L, LÜ Y J. Knowledge Reduction in Formal Decision Contexts Based on an Order-Preserving Mapping. International Journal of General Systems, 2012, 41(2): 143-161.
[126] LI J H, MEI C L, LÜ Y J. Knowledge Reduction in Real Decision Formal Contexts. Information Sciences, 2012, 189: 191-207.
[127] SHAO M W, LI K W. Attribute Reduction in Generalized One-Sided Formal Contexts. Information Sciences, 2017, 378: 317-327.
[128] 王 振,魏 玲.基于单边区间集概念格的不完备形式背景的属性约简.计算机科学, 2018, 45(1): 73-78.
(WANG Z, WEI L. Attribute Reduction of Partially-Known Formal Concept Lattices for Incomplete Contexts. Computer Science, 2018, 45(1): 73-78.)
[129] 王 振.基于部分已知概念格的不完备形式背景的属性约简与规则提取.硕士学位论文.西安:西北大学, 2018.
(WANG Z. Attribute Reduction and Rule Acquisition of Incomplete Formal Contexts Based on Partially-Known Concept Lattices. Master Dissertation. Xi′an, China: Northwest University, 2018.)
[130] LIU M, SHAO M W, ZHANG W X, et al. Reduction Method for Concept Lattices Based on Rough Set Theory and Its Application. Computers and Mathematics with Applications, 2007, 53(9): 1390-1410.
[131] QIN K Y, LI B, PEI Z. Attribute Reduction and Rule Acquisition of Formal Decision Context Based on Object (Property) Oriented Concept Lattices. International Journal of Machine Learning and Cybernetics, 2019, 10(10): 2837-2850.
[132] ZOU L, PANG K, SONG X Y, et al. A Knowledge Reduction Approach for Linguistic Concept Formal Context. Information Sciences, 2020, 524: 165-183.
[133] CORNEJO M E, MEDINA J, RAMIREZ-POUSSA E. Attribute and Size Reduction Mechanisms in Multi-Adjoint Concept La-ttices. Journal of Computational and Applied Mathematics, 2017, 318: 388-402.
[134] REN R S, WEI L. The Attribute Reductions of Three-Way Concept Lattices. Knowledge-Based Systems, 2016, 99: 92-102.
[135] QI J J, QIAN T, WEI L. The Connections between Three-Way and Classical Lattices. Knowledge-Based Systems, 2016, 91: 143-151.
[136] LI M Z, WANG G Y. Approximate Concept Construction with Three-Way Decisions and Attribute Reduction in Incomplete Contexts. Knowledge-Based Systems, 2016, 91: 165-178.
[137] 曹 丽,魏 玲,祁建军.保持二元关系不变的概念约简.模式识别与人工智能, 2018, 31(6): 516-524.
(CAO L, WEI L, QI J J. Concept Reduction Preserving Binary Relations. Pattern Recognition and Artificial Intelligence, 2018, 31(6): 516-524.)
[138] KEPRT A, SNÁŠEL V. Binary Factor Analysis with Help of Formal Concepts // Proc of the International Workshop on Concept Lattices and Their Applications. Berlin, Germany: Springer, 2004: 90-101.
[139] BÉLOHLÁVEK R, VYCHODIL V. On Boolean Factor Analysis with Formal Concept as Factors // Proc of the International Conference on Soft Computing and Intelligent Systems and International Symposium on Advanced Intelligent Systems. Washington, USA: IEEE, 2006: 1054-1059.
[140] BÉLOHLÁVEK R, VYCHODIL V. Discovery of Optimal Factors in Binary Data via a Novel Method of Matrix Decomposition. Journal of Computer and System Sciences, 2010, 76(1): 3-20.
[141] BÉLOHLÁVEK R, TRNECKA M. From-below Approximations in Boolean Matrix Factorization: Geometry and New Algorithm. Journal of Computer and System Sciences, 2015, 81(8): 1678-1697.
[142] 魏 玲,曹 丽,祁建军,等.形式概念分析中的概念约简与概念特征[J/OL]. [2019-09-06]. http://engine.scichina.com/publisher/scp/journal/SSI/doi/10.1360/N112018-00272?slug=abstract.
(WEI L, CAO L, QI J J, et al. Concept Reduction and Concept Characteristics in Formal Concept Analysis [J/OL]. [2019-09-06]. http://engine.scichina.com/publisher/scp/journal/SSI/doi/10.1360/N112018-00272?slug=abstract.)
[143] 谢小贤,李进金,陈东晓,等.基于布尔矩阵的保持二元关系不变的概念约简.山东大学学报(理学版), 2020, 55(5): 32-45.
(XIE X X, LI J J, CHEN D X, et al. Concept Reduction of Preserving Binary Relations Based on Boolean Matrix. Journal of Shandong University(Natural Science), 2020, 55(5): 32-45.)
[144] MAIER D. The Theory of Relational Data Bases. Rockville, USA: Computer Science Press, 1983.
[145] AGRAWAL R, SRIKANT R. Fast Algorithms for Mining Association Rules // Proc of the 20th International Conference on Very Large Data Bases. San Francisco, USA: Morgan Kaufmann Publishers, 1994: 487-499.
[146] MISSAOUI R, GODIN R. Search for Concepts and Dependencies in Databases // ZIARKO W P, ed. Rough Sets, Fuzzy Sets and Knowledge Discovery. Berlin, Germany: Springer, 1994: 16-23.
[147] 王志海,胡可云,胡学钢,等.概念格上规则提取的一般算法与渐进式算法.计算机学报, 1999, 22(1): 66-70.
(WANG Z H, HU K Y, HU X G, et al. General and Incremental Algorithms of Rule Extraction Based on Concept Lattice. Chinese Journal of Computers, 1999, 22(1): 66-70.)
[148] 谢志鹏,刘宗田.概念格与关联规则发现.计算机研究与发展, 2000, 37(12): 1415-1421.
(XIE Z P, LIU Z T. Concept Lattice and Association Rule Discovery. Journal of Computer Research and Development, 2000, 37(12): 1415-1421.)
[149] 胡可云,陆玉昌,石纯一.基于概念格的分类和关联规则的集成挖掘方法.软件学报, 2000, 11(11): 1478-1484.
(HU K Y, LU Y C, SHI C Y. An Integrated Mining Approach for Classification and Association Rule Based on Concept Lattice. Journal of Software, 2000, 11(11): 1478-1484.)
[150] 梁吉业,王俊红.基于概念格的规则产生集挖掘算法.计算机研究与发展, 2004, 41(8): 1339-1344.
(LIANG J Y, WANG J H. An Algorithm for Extracting Rule-Generating Sets Based on Concept Lattice. Journal of Computer Research and Development, 2004, 41(8): 1339-1344.)
[151] SAHAMI M. Learning Classification Rules Using Lattices // Proc of the European Conference on Machine Learning. Berlin, Germany: Springer, 1995: 343-346.
[152] DUQUENNE V, GUIGUES J L. Famille Minimale d′Implications Informatives Résultant d′un Tableau de Données Binaires. Mathématiques et Sciences Humaines, 1986, 24(95): 5-18.
[153] SERTKAYA B. Towards the Complexity of Recognizing Pseudo-Intents // Proc of the 17th International Conference on Conceptual Structures. Berlin, Germany: Springer, 2009: 284-292.
[154] BABIN M A, KUZNETSOV S O. Recognizing Pseudo-Intents Is coNP-Complete // Proc of the 7th International Conference on Concept Lattices and Their Applications. Berlin, Germany: Springer, 2010: 294-301.
[155] QU K S, ZHAI Y H. Generating Complete Set of Implications for Formal Contexts. Knowledge-Based Systems, 2008, 21(5): 429-433.
[156] 马 垣,张学东,迟呈英.紧致依赖与内涵亏值.软件学报, 2011, 22(5): 962-972.
(MA Y, ZHANG X D, CHI C Y. Compact Dependencies and Intent Waned Values. Journal of Software, 2011, 22(5): 962-971.)
[157] ZAKI M J, OGIHARA M. Theoretical Foundations of Association Rules // Proc of the 3rd ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. New York, USA: ACM, 1998: 1-8.
[158] BASTIDE Y, PASQUIER N, TAOUIL R, et al. Mining Minimal Non-redundant Association Rules Using Frequent Closed Itemsets // Proc of the 1st International Conference on Computational Lo-gic. Berlin, Germany: Springer, 2000: 972-986.
[159] BALCAZAR J L. Redundancy, Deduction Schemes, and Minimum-Size Bases for Association Rules. Logical Methods in Computer Science, 2010, 6(2): 1-33.
[160] BELOHLAVEK R, DE BAETS B, OUTRATA J, et al. Inducing Decision Trees via Concept Lattices. International Journal of General Systems, 2009, 38(4): 455-467.
[161] QU K S, ZHAI Y H, ZHAO Y M, et al. Study of Decision Implications Based on Formal Concept Analysis. Journal of Systems Science and Information, 2006, 4(3): 533-542.
[162] STUMME G, TAOUIL R, BASTIDE Y, et al. Fast Computation of Concept Lattices Using Data Mining Techniques // Proc of the 7th International Workshop on Knowledge Representation Meets Databases. Berlin, Germany: Springer, 2000: 129-139.
[163] LI J H, MEI C L, KUMAR C A, et al. On Rule Acquisition in Decision Formal Contexts. International Journal of Machine Learning and Cybernetics, 2013, 4(6): 721-731.
[164] LI J H, HUANG C C, MEI C L, et al. An Intensive Study on Rule Acquisition in Formal Decision Contexts Based on Minimal Closed Label Concept Lattices. Intelligent Automation and Soft Computing, 2017, 23(3): 519-533.
[165] ZHANG S X, LI D Y, ZHAI Y H, et al. A Comparative Study of Decision Implication, Concept Rule and Granular Rule. Information Sciences, 2020, 508: 33-49.[166] WEI L, LIU L, QI J J, et al. Rules Acquisition of Formal Decision Contexts Based on Three-Way Concept Lattices. Information Sciences, 2020, 516: 529-544.
[167] ZHAI Y H, LI D Y, QU K S. Decision Implications: A Logical Point of View. International Journal of Machine Learning and Cybernetics, 2014, 5(4): 509-516.
[168] ZHAI Y H, LI D Y, QU K S. Decision Implication Canonical Basis: A Logical Perspective. Journal of Computer and System Sciences, 2015, 81(1): 208-218.
[169] 翟岩慧,李德玉,曲开社.决策蕴涵规范基.电子学报, 2015, 43(1): 18-23.
(ZHAI Y H, LI D Y, QU K S. Canonical Basis for Decision Implications. Acta Electronica Sinica, 2015, 43(1): 18-23.)
[170] LI D Y, ZHANG S X, ZHAI Y H. Method for Generating Decision Implication Canonical Basis Based on True Premises. International Journal of Machine Learning and Cybernetics, 2017, 8(1): 57-67.
[171] ZHAI Y H, LI D Y, ZHANG J. Variable Decision Knowledge Representation: A Logical Description. Journal of Computational Science, 2017, 25: 161-169.
[172] ZHAI Y H, LI D Y, QU K S. Fuzzy Decision Implications. Knowledge-Based System, 2013, 37: 230-236.
[173] ZHAI Y H, LI D Y, QU K S. Fuzzy Decision Implication Canonical Basis. International Journal of Machine Learning and Cybernetics, 2018, 9(11): 1909-1917.
[174] ZHAI Y H, LI D Y, QU K S. Probability Fuzzy Attribute Implications for Interval-Valued Fuzzy Sets. International Journal of Database Theory and Application, 2012, 5(4): 95-108.
[175] BÉLOHLÁVEK R, VYCHODIL V. Attribute Implications in a Fu-zzy Setting // Proc of the 4th International Conference on Formal Concept Analysis. Berlin, Germany: Springer, 2006: 45-60.
[176] LI J H, HUANG C C, QI J J, et al. Three-Way Cognitive Concept Learning via Multi-granularity. Information Sciences, 2017, 378: 244-263.
[177] 米允龙,李金海,刘文奇,等.MapReduce框架下的粒概念认知学习系统研究.电子学报, 2018, 46(2): 289-297.
(MI Y L, LI J H, LIU W Q, et al. Research on Granular Concept Cognitive Learning System under MapReduce Framework. Acta Electronica Sinica, 2018, 46(2): 289-297.)
[178] NIU J J, HUANG C C, LI J H, et al. Parallel Computing Techniques for Concept-Cognitive Learning Based on Granular Computing. International Journal of Machine Learning and Cybernetics, 2018, 9(11): 1785-1805.
[179] HUANG C C, LI J H, MEI C L, et al. Three-Way Concept Learning Based on Cognitive Operators: An Information Fusion Viewpoint. International Journal of Approximate Reasoning, 2017, 83: 218-242.
[180] LI J H, HUANG C C, XU W H, et al. Cognitive Concept Lear-ning via Granular Computing for Big Data // Proc of the International Conference on Machine Learning and Cybernetics. Wa-shington, USA: IEEE, 2015: 289-294.
[181] 李金海,米允龙,刘文奇.概念的渐进式认知理论与方法.计算机学报, 2019, 42(10): 2233-2250.
(LI J H, MI Y L, LIU W Q. Incremental Cognition of Concepts: Theories and Methods. Chinese Journal of Computers, 2019, 42(10): 2233-2250.)
[182] 李金海,吴伟志,邓 硕.形式概念分析的多粒度标记理论.山东大学学报(理学版), 2019, 54(2): 30-40.
(LI J H, WU W Z, DENG S. Multi-scale Theory in Formal Concept Analysis. Journal of Shandong University(Natural Science), 2019, 54(2): 30-40.)
[183] 李金海,李玉斐,米允龙,等.多粒度形式概念分析的介粒度标记方法.计算机研究与发展, 2020, 57(2): 447-458.
(LI J H, LI Y F, MI Y L, et al. Meso-Granularity Labeled Method for Multi-granularity Formal Concept Analysis. Journal of Computer Research and Development, 2020, 57(2): 447-458.)
[184] 李金海,贺建君,吴伟志.多粒度形式概念分析的类属性块优化.山东大学学报(理学版), 2020, 55(5): 1-12.
(LI J H, HE J J, WU W Z. Optimization of Class-Attribute Block in Multi-granularity Formal Concept Analysis. Journal of Shandong University(Natural Science), 2020, 55(5): 1-12.)
[185] BELOHLAVEK R, DE BAETS B, KONECNY J. Granularity of Attributes in Formal Concept Analysis. Information Sciences, 2014, 260: 149-170.
[186] SHE Y H, HE X L, QIAN T, et al. A Theoretical Study on Object-Oriented and Property-Oriented Multi-scale Formal Concept Analysis. International Journal of Machine Learning and Cybernetics, 2019, 10(11): 3263-3271.
[187] SHAO M W, LÜ M M, LI K W, et al. The Construction of Attribute(Object)-Oriented Multi-granularity Concept Lattices. International Journal of Machine Learning and Cybernetics, 2020, 11(5): 1017-1032.
[188] XIE J P, YANG M H, LI J H, et al. Rule Acquisition and Optimal Scale Selection in Multi-scale Formal Decision Contexts and Their Applications to Smart City. Future Generation Computer Systems, 2018, 83: 564-581.
[189] 郝 晨,范 敏,李金海,等.多标记背景下基于粒标记规则的最优标记选择.模式识别与人工智能, 2016, 29(3): 272-280.
(HAO C, FAN M, LI J H, et al. Optimal Scale Selection in Multi-scale Contexts Based on Granular Scale Rules. Pattern Re-cognition and Artificial Intelligence, 2016, 29(3): 272-280.)
[190] LI J H, LIU Z M. Granule Description in Knowledge Granularity and Representation. Knowledge-Based Systems, 2020, 203: 106160.
[191] YAO Y Y. Rough-Set Concept Analysis: Interpreting RS-Definable Concepts Based on Ideas from Formal Concept Analysis. Information Sciences, 2016, 346/347: 442-462.
[192] 智慧来,李金海.基于必然属性分析的粒描述.计算机学报, 2018, 41(12): 2702-2719.
(ZHI H L, LI J H. Granule Description Based on Necessary Attribute Analysis. Chinese Journal of Computers, 2018, 41(12): 2702-2719.)
[193] ZHI H L, LI J H. Granule Description Based on Positive and Negative Attributes. Granular Computing, 2019, 4(3): 337-350.
[194] ZHI H L, LI J H. Granule Description Based Knowledge Disco-very from Incomplete Formal Contexts via Necessary Attribute Analysis. Information Sciences, 2019, 485: 347-361.
[195] WAN Q, LI J H, WEI L, et al. Optimal Granule Level Selection: A Granule Description Accuracy Viewpoint. International Journal of Approximate Reasoning, 2020, 116: 85-105.
[196] STUMME G, MAEDCHE A. FCA-MERGE: Bottom-up Merging of Ontologies // Proc of the 17th International Joint Conference on Artificial Intelligence. San Francisco, USA: Morgan Kaufmann Publishers, 2001: 225-230.
[197] CHEN R C, BAU C T, YEH C J. Merging Domain Ontologies Based on the Wordnet System and Fuzzy Formal Concept Analysis Techniques. Applied Soft Computing, 2011, 11(2): 1908-1923.
[198] ZHAO Y, WANG X, HALANG W. Ontology Mapping Based on Rough Formal Concept Analysis[C/OL]. [2020-04-07]. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1602
313.
[199] ZHAO M Y, ZHANG S M, LI W Z, et al. Matching Biomedical Ontologies Based on Formal Concept Analysis. Journal of Biomedical Semantics, 2018, 9. DOI: 10.1186/s13326-018-0178-9.
[200] 朱 佳,王向前,张宝隆,等.基于形式概念分析的煤矿事故本体构建.工矿自动化, 2018, 44(5): 26-30.
(ZHU J, WANG X Q, ZHANG B L, et al. Construction of Coal Mine Accident Ontology Based on Formal Concept Analysis. Industry and Mine Automation, 2018, 44(5): 26-30.)
[201] 金 阳,左万利.多维概念格与多维序列模式的增量挖掘.计算机研究与发展, 2007, 44(11): 1816-1824.
(JIN Y, ZUO W L. Multi-dimensional Concept Lattice and Incremental Discovery of Multi-dimensional Sequential Patterns. Journal of Computer Research and Development, 2007, 44(11): 1816-1824.)
[202] 刘馨蕊,张伟峰.基于多维多值概念格的矿山生产地学本体构建研究.地球信息科学学报, 2018, 20(2): 176-185.
(LIU X R, ZHANG W F. Construction of Mine Production Geo-Ontology Based on Multi-dimensional and Many-Valued Concept Lattices. Journal of Geo-information Science, 2018, 20(2): 176-185.)
[203] 渠寒花,惠建忠,何险峰,等.气象服务形式概念分析模型研究.计算机工程与应用, 2018, 54(9): 257-264.
(QU H H, HUI J Z, HE X F, et al. Formal Concept Analysis Model of Meteorological Services. Computer Engineering and Applications, 2018, 54(9): 257-264.)
[204] 覃丽珍,李金海,王扬扬.基于概念格的知识发现及其在高校就业数据分析中的应用.山东大学学报(理学版), 2015, 50(12): 58-64.
(QIN L Z, LI J H, WANG Y Y. Concept Lattice Based Know-ledge Discovery and Its Application to Analysis of Employment Data in Universities. Journal of Shandong University(Natural Science), 2015, 50(12): 58-64.)
[205] 张 涛,李 慧,任宏雷.博客数据的属性拓扑分析.燕山大学学报, 2015, 39(1): 42-50.
(ZHANG T, LI H, REN H L. Attribute Topology Analysis of Blogger Data. Journal of Yanshan University, 2015, 39(1): 42-50.)
[206] AGON C, ANDREATTA M, ATIF J, et al. Musical Descriptions Based on Formal Concept Analysis and Mathematical Morphology // Proc of the International Conference on Conceptual Structures. Berlin, Germany: Springer, 2018: 105-119.
[207] ZHANG T, LIU M Q, LIU W Y. The Causality Research between Syndrome Elements by Attribute Topology. Computational and Mathematical Methods in Medicine, 2018. DOI: 10.1155/2018/9707581.
[208] 王 慧,秦 静,郑 涛.量化概念格上网络盗窃行为拟合预测.中国人民公安大学学报(自然科学版), 2017, 23(2): 63-67.
(WANG H, QIN J, ZHENG T. Fitting Prediction of Network Theft on Quantitative Concept Lattice. Journal of People′s Public Security University of China(Science and Technology), 2017, 23(2): 63-67.)
[209] CASTELLANOS A, CIGARRÁN J, GARCIA-SERRANO A. Formal Concept Analysis for Topic Detection: A Clustering Quality Experimental Analysis. Information Systems, 2017, 66: 24-42.
[210] HAO S F, SHI C Y, NIU Z D, et al. Concept Coupling Learning for Improving Concept Lattice-Based Document Retrieval. Engineering Applications of Artificial Intelligence, 2018, 69: 65-75.
[211] ZHANG T, LI H H, LIU M Q, et al. Incremental Concept-Cognitive Learning Based on Attribute Topology. International Journal of Approximate Reasoning, 2020, 118: 173-189.
[212] 王 凯,杨 枢,刘玉文.基于多层次概念格的图像场景语义分类方法.山西师范大学学报(自然科学版), 2017, 31(2): 27-34.
(WANG K, YANG S, LIU Y W. A Semantic Classification Method of Image Scene Based on Concept Lattice Hierarchy. Journal of Shanxi Normal University(Natural Science Edition), 2017, 31(2): 27-34.)
[213] 王亚平,张素兰,张继福,等.基于模糊概念格的视觉单词生成方法.小型微型计算机系统, 2016, 37(8): 1868-1872.
(WANG Y P, ZHANG S L, ZHANG J F, et al. Visual Words Generation Method Based on the Fuzzy Concept Lattice. Journal of Chinese Computer Systems, 2016, 37(8): 1868-1872.)
[214] YAO Y Y. Interpreting Concept Learning in Cognitive Informatics and Granular Computing. IEEE Transactions on Systems, Man, and Cybernetics(Cybernetics), 2009, 39(4): 855-866.
[215] WANG Y X. On Concept Algebra: A Denotational Mathematical Structure for Knowledge and Software Modelling. International Journal of Cognitive Informatics and Natural Intelligence, 2008, 2(2): 1-19.
[216] KUMAR C A, ISHWARYA M S, LOO C K. Formal Concept Analysis Approach to Cognitive Functionalities of Bidirectional Associative Memory. Biologically Inspired Cognitive Architectures, 2015, 12: 20-33.
[217] FAN B J, TSANG E C C, XU W H, et al. Attribute-Oriented Cognitive Concept Learning Strategy: A Multi-level Methods. International Journal of Machine Learning and Cybernetics, 2019, 10(9): 2421-2437.
[218] YAN E L, SONG J L, REN Y L, et al. Construction of Three-Way Attribute Partial Order Structure via Cognitive Science and Granular Computing. Knowledge-Based Systems, 2020, 197: 105859.
[219] 张文修,徐伟华.基于粒计算的认知模型.工程数学学报, 2007, 24(6): 957-971.
(ZHANG W X, XU W H. Cognitive Model Based on Granular Computing. Chinese Journal of Engineering Mathematics, 2007, 24(6): 957-971.)
[220] 张清华,周玉兰,腾海涛.基于粒计算的认知模型.重庆邮电大学学报(自然科学版), 2009, 21(4): 494-501.
(ZHANG Q H, ZHOU Y L, TENG H T. Cognition Model Based on Granular Computing. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2009, 21(4): 494-501.)
[221] CHEN J K, MI J S, LIN Y J. A Graph Approach for Knowledge Reduction in Formal Contexts. Knowledge-Based Systems, 2018, 148: 177-188.
[222] MAO H, MIAO H R. Attribute Reduction Based on Directed Graph in Formal Fuzzy Contexts. Journal of Intelligent and Fuzzy Systems, 2018, 34(6): 4139-4148.
[223] GUO L K, LI Q G, ZHANG G Q. A Representation of Continuous Domains via Relationally Approximable Concepts in a Gene-ralized Framework of Formal Concept Analysis. International Journal of Approximate Reasoning, 2019, 114: 29-43.
[224] LANG G M, LUO J F, YAO Y Y. Three-Way Conflict Analysis: A Unification of Models Based on Rough Sets and Formal Concept Analysis. Knowledge-Based Systems, 2020, 194. DOI: 10.101
6/j.knosys.2020.105556.
[225] 徐伟华,李金海,魏 玲,等.形式概念分析理论与应用.北京:科学出版社, 2016.
(XU W H, LI J H, WEI L, et al. Formal Concept Analysis: Theory and Application. Beijing, China: Science Press, 2016.)
[226] POELMANS J, IGNATOV D I, KUZNETSOV S O, et al. Formal Concept Analysis in Knowledge Processing: A Survey on Applications. Expert Systems with Applications, 2013, 40(16): 6538-6560.
[227] MA J M, ZHANG W X. Axiomatic Characterizations of Dual Concept Lattices. International Journal of Approximate Reasoning, 2013, 54(5): 690-697.
[228] SONG X X, WANG X, ZHANG W X. Independence of Axiom Sets Characterizing Formal Concepts. International Journal of Machine Learning and Cybernetics, 2013, 4(5): 459-468.
[229] 张慧雯,刘文奇,李金海.不完备形式背景下近似概念格的公理化方法.计算机科学, 2015, 42(6): 67-70, 92.
(ZHANG H W, LIU W Q, LI J H. Axiomatic Characterizations of Approximate Concept Lattices in Incomplete Contexts. Compu-ter Science, 2015, 42(6): 67-70, 92.)
[230] 陈锦坤,李进金.概念格的公理化.计算机工程与应用, 2012, 48(5): 41-43.
(CHEN J K, LI J J. Axiomatization of Concept Lattice. Computer Engineering and Applications, 2012, 48(5): 41-43.)
[231] SHAO M W, WU W Z, WANG C Z. Axiomatic Characterizations of Adjoint Generalized(Dual) Concept Systems. Journal of Intelligent and Fuzzy Systems, 2019, 37(3): 3629-3638.
[232] POELMANS J, KUZNETSOV S O, IGNATOV D I, et al. Formal Concept Analysis in Knowledge Processing: A Survey on Models and Techniques. Expert Systems with Applications, 2013, 40(16): 6601-6623.
[233] POELMANS J, IGNATOV D I, KUZNETSOV S O, et al. Fuzzy and Rough Formal Concept Analysis: A Survey. International Journal of General Systems, 2014, 43(2): 105-134.
[234] REN R S, WEI L, YAO Y Y. An Analysis of Three Types of Partially-Known Formal Concepts. International Journal of Machine Learning and Cybernetics, 2018, 9(11): 1767-1783.
[235] 仇国芳,张志霞,张 炜.基于粗糙集方法的概念格理论研究综述.模糊系统与数学, 2014, 28(1): 168-177.
(QIU G F, ZHANG Z X, ZHANG W. A Survey for Study on Concept Lattice Theory via Rough Set. Fuzzy Systems and Mathematics, 2014, 28(1): 168-177.)
[236] YANG H Z, LEUNG Y, SHAO M W. Rule Acquisition and Attribute Reduction in Real Decision Formal Contexts. Soft Computing, 2011, 15(6): 1115-1128.
[237] JANOSTIK R, KONECNY J. General Framework for Consistencies in Decision Contexts. Information Sciences, 2020, 530: 180-200.
[238] ZHANG Z, DU J, WANG L M. Formal Concept Analysis App-roach for Data Extraction from a Limited Deep Web Database. Journal of Intelligent Information Systems, 2013, 41(2): 211-234.
[239] XU J, WANG G Y, LI T R, et al. Local-Density-Based Optimal Granulation and Manifold Information Granule Description. IEEE Transactions on Cybernetics, 2018, 48(10): 2795-2808.
[240] ZHU X B, PEDRYCZ W, LI Z W. Granular Data Description: Designing Ellipsoidal Information Granules. IEEE Transactions on Cybernetics, 2017, 47(12): 4475-4484.
[241] KUZNETSOV S O. Machine Learning on the Basis of Formal Concept Analysis. Automation and Remote Control, 2001, 62(10): 1543-1564.
[242] IGNATOV D I, GNATYSHAK D V, KUZNETSOV S O, et al. Triadic Formal Concept Analysis and Triclustering: Searching for Optimal Patterns. Machine Learning, 2015, 101(1/2/3): 271-302.
[243] 于 剑.图灵测试的明与暗.计算机研究与发展, 2020, 57(5): 906-911.
(YU J. Brilliance and Darkness: Turing Test. Journal of Computer Research and Development, 2020, 57(5): 906-911.)
[244] 李金海,闫梦宇,徐伟华,等.概念认知学习的若干问题与思考.西北大学学报(自然科学版), 2020, 50(4): 501-515.
(LI J H, YAN M Y, XU W H, et al. Some Problems and Thoughts in Concept-Cognitive Learning. Journal of Northwest University(Natural Science Edition), 2020, 50(4): 501-515.)
|